A Geographic Approach to Population

Demography

- The study of population characteristics
 - Looks at spatial distributions of people by age, gender, occupation, fertility, health, etc...

Population

• The number of people within a given geographic area

Mapping Data – Population Cartogram Map

Population Indicators

- Total Fertility Rate The average number of a babies a woman will have during her life
- Crude Birth Rate (CBR) The average number of births per year for every 1,000 people
- Crude Death Rate (CDR) The average number of births per year for every 1,000 people
- Natural Increase Rate (NIR) Calculated by comparing CBR to CDR to determine how quickly, if at all, the population is growing
- Life Expectancy Average number of years someone from the area will live

Population Density

- The amount of people in a given area.
- Key indicator in helping determine potential stresses on resources
 - Nebraska about 24 people/square mile
 - Alaska about 1.2 people per square mile & Washington D.C. about 11,000/square mile

Physiological Density

- The amount of people divided by the amount of arable land
 - Ex. USA is 445 per square mile, Egypt is 6,682 per square mile
- The higher the physiological density the greater the pressure the people put on the land to produce food

Agricultural Density

- Is the ratio of the number of farmers to the amount of arable land
 - USA has 2 farmers per square kilometer, China is 145 farmers per square kilometer

Overpopulation

• Refers to the over-exertion of resources given a population's need in a specific area.

Mapping Data – Population Pyramids

The Demographic Transition Model

Uses Crude Birth
Rate and Crude
Death Rate to
calculate
population
growth at
different stages
of development

Epidemiologic Transition Model

Thomas Malthus (1766 – 1834)

- English Economist
 - 1766-1834
 - Considered to be father of Demographics
 - Made observations of England's working class during industrial revolution

Population vs. Resources

• For stages 1-3 resources exceed population, then as population exceed resources this leads to "misery"

Positive Checks

* Population exceeds food supply and is kept in check by war, famine, or disease. It then drops below the food supply. As the population recovers, so the cycle continues.

Negative Checks

* Here, as population starts to approach the limits of the food supply, so growth slows. Malthus says this slowing is caused by delayed marriage.

Neo-Malthusians

- 2. Neo-Malthusians Robert Kaplan and Thomas Fraser expanded Malthus' ideas to more than just food, but to also include energy resources
 - Argue wars and civil violence will increase as food, clean air, fuel, and suitable farmland become more scarce

Marxian Demographics

- Analyzes population characteristics and recognizes importance of inequality
- Divides society into the "haves" and the "have nots"
 - Disparity in distribution of resources. "Haves" comprise much smaller percentage of population but control majority of resources

20th Century Thought

- Esther Boserup
 - Optimistic view of population growth
 - As population approached crisis the world would respond with assistance spawning economic growth and new technologies
- Julian Simon
 - Population growth spurs economic development
 - More people means more ideas

Boserup's Theory

* Boserup argues that as the population approaches the limits of the food supply, that food supply increases as new technology improves yeilds.