Erosion and Flooding

Chapter 14: River Systems

Floodplains

- Generally flat areas around a stream impacted by streams processes of erosion and aggradation
 - Floodplains vary in size depending on number of factors
- Constantly changing depending on characteristics of stream

Case Study: Harriet Island (Minnesota)

Case Study: Elk Horn River 2019

Oxbow Lakes

Case Study: Missouri River

Erosion

- Erosion: Removal and transport of earth
 - Rock, soil, sand etc.
- Transported material is called the stream's <u>load</u>
 - Dissolved load
 - Suspended load
 - Bed load

Case Study: Grand Canyon (Arizona)

Case Study: Blyde River Canyon (South Africa)

Case Study: Port Republic (Maryland)

Deposition

- Streams deposit and redeposit their loads along their banks and streambeds
 - Sediment constantly working towards Base Level
 - Competence maximum particle size
 - Capacity maximum load; related to discharge
- Contributes to the natural building of levees

Case Study: Gooseberry River (Minnesota)

Levees

- Depositions of load along the banks of a river over time
 - Help with flood control

Erosion Control

- Especially in urban/developed areas and areas that experience frequent flooding Erosion control used to protect riverbanks from further erosion
 - Using earthen embankments with vegetation, concrete/stone, and other materials

Case Study: Malecon on Guayas River (Ecuador)

Base Level

- The lowest level which water can erode to
 - Also spots of heavy Deposition
- Leads to the creation of floodplains, waterfalls, and other features

Achieving Base Level

CREDIT: MICHIGAN SEA GRANT. NOT TO SCALE

Case Study: Minnesota's "North Shore"

Case Study: Iceland

Runoff

- As part of water cycle water runs overland and eventually ends up in streams
 - Carries soil, trash, and any other substances it can with it

Case Study: Gulf of Mexico Dead Zone

Flooding

• Caused by changes in precipitation and snow melt

• Flash floods: Connected to sudden concentrations in precipitation

2019 Flood Before and After

Case Study: Zion National Park (Utah)

Flood Control/Floodplain Management

- Artificial levees
- Flood-control dams
- Channelization
- Nonstructural approach through good floodplain management

Case Study: Saint Cloud (Minnesota)

Case Study: Moscow River (Russia)

Case Study: Cheonggyecheon Stream (South Korea)

Case Study: Dusseldorf Rhine Park (Germany)

Case Study: Papillion Creek

Inundation areas on Big Papillion Creek near 84th & I-80

Simulation of 2010 Ames Flood in Omaha

Case Study: Los Angeles River (California)

1938 flood

Beavers and Healthy Streams

How the dams help

Water flow is high during heavy rainfall and can cause flooding downstream

With beavers

Beavers dam a stream to create pool in which they build a lodge. Series of dams and pools slow and divert water flow so more can be absorbed by the land

